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Summary

A summary of the work performed under NASA grant NCC3-605 is presented. More details can
be found in the cited references. This grant led to the development of relatively faster aeroelastic
analyses methods for predicting flutter and forced response in fans, compressors, and turbines
using computational fluid dynamic (CFD) methods.

Linearized Euler Solvers

Previous aeroelastic analyses have used the unsteady aerodynamic equations based on uniform
flow. These methods neglect the effect of steady aerodynamic loading on unsteady aerodynamic
forces. Steady loading is due to angle of attack and airfoil shape effects. These methods require
the least amount of computational time to perform an aeroelastic analysis. Advanced methods
based on computational fluid dynamic (CFD) methods have been developed to include steady
loading effects in the aeroelastic analysis. However, these methods, usually based on time
marching, require an enormous amount of computational time for the aeroelastic analysis.
Methods based on the linearized, unsteady, aerodynamic equations combine the benefits of the
above two methods. They are faster and include steady loading effects. This is achieved by
linearizing the non-linear unsteady equations using a non-linear steady aerodynamic solution to
obtain linear, unsteady, aerodynamic equations. These equations can be solved in the frequency
domain, by assuming harmonic motion for the unsteady oscillations. The resulting analysis code
is faster and includes steady loading effects.

In this grant period, aeroelastic analysis codes have been developed using a two-dimensional
(2D) linearized Euler solver, LINFLUX-2D, and a three-dimensional (3D) linearized Euler
solver LINFLUX-3D. The difference between them is in using different structural models.

Also, during this grant period, a version of the LINFLUX-2D code and a version of the
LINFLUX-3D code were implemented on an SGI machine, and the unsteady aerodynamic
calculations were validated with published results. The execution of LINFLUX-3D required
learning and running a steady aerodynamic code, TURBO-AE on SGI machines. This in turn
required the development of an interface code to link the steady solution from the TURBO-AE
code to the LINFLUX-3D code. -

Two-Dimensional Aeroelastic Analysis code MISER-LE

A typical section structural model was used to develop the aeroelastic code, MISER-LE. The
unsteady aerodynamic forces are obtained from the based on linearized Euler solver, LINFLUX-
2D. This structural model has two degrees of freedom, bending and torsion. The governing
aeroelastic equations are solved in the frequency domain for each interblade phase angle.
Cascades with 9 and 12 blades were considered in the analysis. The unsteady aerodynamic
forces were obtained from linear theory, where steady loading effects were neglected, and from
LINFLUX-2D where these effects were included. The results are presented in Ref. 1. An
extended version of this paper, showing an extension to forced response and correlation with
previously published data is given Ref. 2.
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Quasi-3D Aeroelastic Analysis code, ASTROP2-LE

In this analysis, a three-dimensional structural model is used for the aeroelastic analysis. The
unsteady aerodynamic forces are obtained from LINFLUX-2D. The structural and the unsteady
aerodynamic models are combined using strip theory. An existing code, ASTROP2 was taken
and updated to include forced response, and the unsteady aerodynamic solution from LINFLUX-
2D. The governing equations are solved in the frequency domain. The details of the resulting
code ASTROP2-LE and the results for a tuned cascade aeroelastic analysis were presented in
Ref. 3. The study was later extended to include mistuning effects and is being reviewed for
NASA TM publication, Ref. 4.

Three-Dimensional Aeroelastic Analysis code, LINFLUX-AE

In this effort, an aeroelastic system, LINFLUX-AE, is being developed for the aeroelastic
analysis of three-dimensional structures, A three-dimensional structural model was combined
with the three-dimensional, unsteady, aerodynamic model LINFLUX-3D. A normal mode
approach combined with the frequency domain solution method is used for aeroelastic analysis.
Modules were developed to interpolate structural mode shapes on aerodynamic grids, calculation
of generalized forces and flutter eigenvalues. The modules were checked with known results.
The details of the preliminary version of the LINFLUX-AE code were presented in Ref. 5. The
paper presents flutter calculations for a helical fan with flat plate geometry, and for a real fan, E-
cubed fan. Flutter eigenvalues and work done per cycle were compared with those obtained
using TURBO-AE. Further validation and extension to forced response are under progress.
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ABSTRACT

Flutter analysis is presented for a cascade of

blades in subsonic and transonic flow. The
structural mode! for each blade is a typical section
with bending and torsion degrees of freedom.
The unsteady aerodynamic forces are obtained by
solving unsteady linearized Euler equations. The
unsteady linearized equations are obtained by
linearizing the unsteady non-linear eguations
about the steady flow. The predicted unsteady
aerodynamic forces include the effect of steady
aerodynamic loading due to airfoil shape,
thickness and angle of attack. The unsteady
aerodynamic and aeroelastic equations are solved
in the frequency domain. The present aeroelastic
solver showed good correlation with published
results. Further improvements are required to use

the unsteady aerodynamic model in a design -

cycle.
INTRODUCTION

The aeroelastic research program at NASA Lewis
Research Center is focused on flutter (unstalled,
stalled, and whitl), and forced response analysis of
propulsion components. An overview of this
research was presented in Ref. 1. The review

showed that a range of aerodynamic and structural

models have been used to obtain the aeroelastic
equations. Both, time and frequency domain
methods have been used to obtain unsteady
aerodynamic forces and to solve the aeroelastic
equations. It was noted that time domain methods
require large computational time compared to
frequency domain methods, and should only be
used when non-linearities are expected, and may
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be used in the final design.

Two approaches have been used in obtaining the
unsteady aerodynamic forces using frequency
domain methods. In the first approach, Refs. 2-6,
the unsteady aerodynamic equations are
linearized about a uniform flow, there by
neglecting the effects of airfoil shape, thickness,
and angle of aftack. The unsteady aerodynamic
models developed in Refs. 3-6 have been used to
study the flutter and forced response analysis of a
compressor cascade using a typical section
structural model, in Refs. 7-8. However, methods
developed by this approach are restricted to
shock-free flows through lightly-loaded blade
rows. In the second approach, Ref. 9, the
unsteady flow is regarded as a small amplitude
perturbation about a non-uniform steady flow. The
unsteady non-linear aerodynamic equations are
linearized about the non-uniform steady flow,
resulting in variable coefficient linear unsteady
aerodynamic equations, which include the effects
of steady aerodynamic loading due to airfoil shape,
thickness and angle of attack.

Following the second approach, Refs. 10-11
developed a nonlinear steady and linear unsteady
aerodynamic model based on the potential
equation. This unsteady aerodynamic model was
used to study the effect of steady aerodynamic
loading on flutter stability using a typical section
structural model in Ref. 12. However, the
formulation based on the potential equation
requires cotrections for entropy and flow rotation.
The Euler equations can be used to correctly
model rotationa! and entropy effects associated
with strong shocks. Unsteady linearized Euler
aerodynamic models that include the effect of
steady aerodynamic loading were developed in
Refs. 13-15.

Recently, a two dimensional linearized Euler code
named LINFLX2D was developed in Ref. 16 under
a NASA contract. This code is based on the non-
linear Euler solver, NPHASE, developed in Ref.



17. The objectives of the present study are (1) to
couple the LINFLX2D code with the aeroelastic
code MISER (Refs. 7,8 ), (2) validate the
aeroelastic predictions, and (3) evaluate LINFLX2D
code for its usefulness in a aeroelastic design
cycle. The MISER code at present calculates the
aeroelastic  stabilty using the  unsteady
aerodynamic models based on classical linear
theories (theories based on flat plate geometry
formulation), MISER code is selected because the
typical section structural model with pitching and
plunging degrees of freedom is the basis for
aeroelastic formulation. This is in line with the

unsteady aerodynamic model of LINFLX2D. Inthe

present paper flutter analysis of a cascade of
blades is presented using the frequency domain
approach for a two dimensional cascade model.
Two degrees of freedom, plunging and pitching,
are considered in the analysis. Brief descriptions
of the formulation and method of analysis are given
in the next section, followed by results and
discussion.

FORMULATION

The aerodynamic model and the aeroelastic
formulation are described in this section.

Aerodynamic model

Non-linear Steady Euler Solver, N

The steady aerodynamic mode! is based on the
unsteady, two dimensional, Euler equations. The
equations in conservative differential form are
solved in a time dependent body-fitted curvilinear
reference frame. This transformation process and
the ensuing numerical method are presented in
detail in Ref. 17. The equations are discretized
and solved using a finite volume method using a
TVD scheme. The steady solutions presented
herein are obtained using the basic implicit
scheme developed in Ref. 17, which is third order
accurate spatially and second order accurate in
time.

Linear Unsteady Euler Solver, LINFLX2D

To obtain the linearized unsteady Euler equations,
Ref. 16, the independent variables in the
unsteady non-linear Euler equations are
expanded in an asymptotic series of the form

U=U@) + ulx(xhH + higher order terms )

Assuming the unsteady excitations are harmonic in
time, and with the first order variable to be
represented as complex valued, the above
equation can be written as

U=U(x) + Refu{x)exp(iwt)] + higher order terms  (2)

Here, the term U(x) is of order one and the second
term is of the order e.

Substituting the expansion of Egs. 1 and 2 in the
nonlinear unsteady Euler equations, and equating
terms of like power in e, and neglecting terms of
second and higher order in e, nonlinear steady
equations and linear variable coefficient unsteady
equations are obtained.

For harmonic blade motions with constant phase
angle between adjacent blades (interblade phase
angle), the values of interblade phase angle (s)
that can occur are given as (Ref. 18).

G-=2nriN r=0,1,2, ... ,N-1 3
Nis the number of blades in the cascade. In a time
domain approach, the number of blocks required
depends on the inter blade phase angle, and small
phase angles may require large number of blocks
to calculate the unsteady aerodynamic forces.
However, with the linear approach, the periodic
conditions are applied on a single extended blade
passage region i.e. a region of angular pitch,

6=2*n/N @)

In solving the linear unsteady equations, the
independent variables are regarded as pseudo
time dependent. This allows solutions to be
determined using conventional time -marching
algorithms to converge the steady and the
complex amplitudes of the unsteady conservation
variables to their steady state values. For more
details, see reference 16.

Grid and Boundary Conditions

The flow equations are solved on a passage-
centered H-grid. Two grid blocks are shown in Fig.
2 for calrity. Within a typical grid block, the lower
computational boundary contains the upper
surface of one biade in the cascade, while the
upper computational boundary contains the lower



surface of the adjacent blade. Periodic boundaries
in the blade-to-blade direction extend upstream
and downstream from the blade surfaces. The
inlet boundary corresponds to the left
computational boundary and the outflow
corresponds to the right boundary. The airfoil
upper and lower surfaces are located along lines B-
C and F-G, respectively where solid wall boundary
conditions are employed. Lines A-E and D-H
represent inflow and outflow boundaries,
respectively. For subsonic flow these conditions
are set using characteristic variable boundary
conditions. The procedure used is to fix the
incoming flow incidence angle and adjust the back
pressure (uniform across D-H) until the average
Mach number along the inflow boundary (A-E)
matches some specified value. For supersonic
flow, the inlet conditions are assumed to be
uniform by specifying the flow density, velocity,
flow angle, and pressure. The outflow variables
are extrapolated from the interior by using simple
first-order model. Periodicity is imposed between
lines A-B and E-F, and lines C-D and G-H.

Aeroelastic model

For completeness, the aercelastic formulation in
the frequency domain { Refs. 7,8) is presented in
this section. The analysis is presented for a
generally mistuned cascade in which each blade
may have different structural properties. The
analysis for the special case of atuned cascade in
which all blades are identical is presented in the
subsequent section. The approach followed
assumes that the structure is vibrating in an
aeroelastic mode (interblade phase angle mode)
with a motion that is a harmonic function of time.
The frequency of oscillation is permitted to take on
complex values thus allowing decaying-, growing-
or constant-amplitude oscillations. The
aerodynamic forces corresponding to constant-

amplitude harmonic oscillations are inserted info

the equations of motion to formulate a complex
eigenvalue problem. The eigenvaiues are
generally complex quantities, and therefore a
complex frequency is obtained. The real part of the
complex frequency tepresents the damping ratio
and thus its sign determines whether the motion is
decaying or growing; the imaginary part represents
the damped frequency of oscillation.

Aeroelastic analysis for mistuned cascades

The equations of motion for the typical section
(see Fig. 1) with structural damping can be written

in matrix form for the sth blade as:

o ) 1
[Ms]:qs: + [Cs]:qs} U [Ks] qs} = fs = {faqs}+ {fas (&)
{fa?)
aerodynamic locads and {fz} denotes motion-
independent aerodynamic loads.

where denotes motion-dependent

For the two degrees of freedom considered here,
equation 5 can be rewritten as

1 xg fi;s'/b\ o | 2onslhs 0 fh's/b\
X5 T'ds \l &s. ! 0 2r 5005 o ‘l 023 [
oz 0 fhs/b _ ffhs/msb

0 rhak )| % fos i sb? (6)

where h is the plunging (bending) displacement
normal to the chord, « is the pitching (torsion)
displacement, x, the distance between the elastic

axis and center of mass in semi-chord units; ry is

the radius of gyration about the elastic axis in semi-
chord units; {p and {y are the damping ratios; b is

the airfoil semi-chord;wp is the uncoupled natural
frequency for bending; wg is the uncoupled
natural frequency for torsion; 75 and fp are the
aerodynamic loads and s varies between 0 and N

It is assumed that the motion of the blades is
harmonic in time with a frequency o and is given by

N-1
lhs/bl - hos/b Pl — 2 [har/b it p10s @)
|G | G =0

Note that the motion has been represented as the
sum of contributions from each interblade phase
angle mode in which each blade has an amplitude
har'b, ogr and the phase angle between adjacent

blades is given by Eq. 3.

The corresponding aerodynamic forces can be
written in terms of the complex-valued unsteady
aerodynamic coefficients /hh |, lah  Thae loor + Twh
and /g -



YR . l 2N
!fhs/msb, S0 [lm by + o O.'m] 0% 4 0 Z !

l[as/m sb-l A ‘Il“‘" hylb Lo, aﬂ,] ks

(8)

where g =mg / ﬂpmbz is the mass ratio of the
blade.

i .
whr ]e o pites

wit

Using Eq. 7 and Eq. 8, Eq. 6 can be written as

{h;s/b\em

hos!b

et 2 1k

N-1 hab) o i N-1 .
=¥ [A,]{ . }emew + Y [ADJeiosel
r=0

)

=0

where
1
[M,]= 1 { - }
Xala
2
(@ns! o) (1421 8s) 0
[KS] = 2
0 12 (0gs/ ) (1421 4)

[Ar]=uhhr lhar}

lr l(x T
aor)=[1v]

wo = reference frequency and the damping terms
are approximated as,

A =(w, o}

. . 2

2L 0WpsChs = 20 Whs Chs

To proceed further, the equations for all the N
blades on the disk must be considered. For the
assumed  harmonic  blade  motion, the
displacements {X} of all blades can be written as a
sum of contributions from all interblade phase
angles as

(Xle = [E][Y | (1)

where {Y} consists of the displacement amplitudes
corresponding to the rth interblade phase angle
and [E] is the transfer matrix, the elements of which
are given by

E(s,r) =62ﬂsri IN

where s is the blade counter and r is the interblade
phase angle counter.

Using this relation, we obtain:

(BT DEIY 1+ 2 ETIRNEIY |= )Y} + D! 1z

where

[M] is the mass matrix for all blades with diagonal
elements consisting of mass matrix of each blade.
Similarly [K] is the stiffness matrix and [A] is the
aerodynamic matrix for al blades, {AD} is the
aerodynamic forces due to wake on all the blades.

Finally, after rearranging, the equations can be
written as:

[[P1-2[Q]{¥) = -{aD)

(13)
where

) =[BT (M][E]+[4]]

[@] =[BT [K][E]

For a stability calculation (flutter), the motion-
independent forces {AD} are set to zero and the
eigenvalue problem is obtained in the standard
form:

[Pl-2 Q1] = {o)

(14)

The solution of the above eigenvalue problem (14)
results in 2N complex eigenvalues of the form

(15)

The real part of the eigenvalue ( ﬁ) represents
the damping ratio, and the imaginary part { v )
represents the damped frequency; flutter occurs if

L=0 for any of the eigenvalues.



The aeroelastic response of the blades induced by
wakes is calculated from equation (13) as

{Y}:'“P]'“Q]F{AD} (16)

The amplitude of each blade is obtained by
substituting equation (16) into equation (11).

Aeroelastic analysis for a tuned cascade

For a tuned cascade (or rotor), in which al the
blades are identical, the foregoing analysis can be
simplified considerably. in this case, the
aeroelastic modes consist of individual blades
vibrating with equal amplitudes with a fixed
interblade phase angle between adjacent blades.
Hence, for this problem, the motion of the typical
blade is written as

hotb| _ [hostb| sur _ [Rartd| i i
as aOS aar (18)

Thus the equation for the blade becomes

hlb
~ (M) e
| 1{

roo1 helb
= A,- ar
L ]{ .

ha,./b ei(at +0;8)

}ei(wt+a,s) + A [Ks]{
aar

}ei(wt +G;8) {AD,v}e (ot +0.s)
(19)

Since the blades are identical, the same equation

is obtained for each blade. Thus, no additional
information can be obtained by assembling the
equations for all the blades on the disk as was
done for the general mistuned system. Instead,
equation (19) is solved for N different values of the
interblade phase angle given by equation (3). As
before, the equations for the forced-response
problem are obtained by setting the motion-
dependent forces to zero; the equations for the
flutter problem are obtained by setting the motion-
independent forces to zero.

For the stability calculation, the equation can be
simplified as

where

B Ly Hx g + g

2 2 .
L log) (14200)  p(on/oy) (142:83)
1ot Lopy }lf§+law
.ur(21 (1+2iCa) H 7'3 (1'*’21'{&)

[P r] =

where the subscript ‘s’ identifying the blade has
been dropped and the reference frequency wg

has been chosen to be equal to the torsional
frequency g .

The solution of the above eigenvalue problem
results in two complex eigenvalues of the form

K+ V,andflutter occurs if L= 0 . For the tuned
cascade, the stability of each phase angle mode is
examined separately. Hence, the interblade
phase angle is fixed at one of the values given by
equation (3), and the 2X2 eigenvalue problem is
solved. The value of interblade phase angle is
then changed, and the procedure is repeated for
each of the N permissible values. The critical
phase angle is identified as the one which results
in the lowest flutter speed.

Stability calculation

The aerodynamic coefficients are calculated
before the eigenvalue problem can be set up and
solved. Since the unsteady aerodynamic
coefficients depend on the frequency of
oscillation, it is necessary to assume a frequency w
(reduced frequency of blade vibration based on
chord, k¢ ) in advance to be able to calculate the
aerodynamic coefficients. In actual calculations,
the aerodynamic coefficients are functions of inlet
Mach number M., and interblade phase angle
or, in addition to cascade geometric parameters.
in the present study, for a given inlet Mach
number, and the reduced frequency is varied until
the real part of one of the eigenvalues U

becomes zero while the real parts of the remaining
eigenvalues are negative. The assumed flutter-
reduced frequency kof  and the calculated flutter

frequency Vr are both based on wf . Thus,
these two can be combined to eliminate wrand the
flutter speed is obtained, namely,

Vi = Vfc @ / keg.  Since the inlet Mach



number is known, this flutter speed gives the inlet
condition (speed of sound, a. ) at which the
cascade will be neutrally stable for the given Mach
number. This procedure can be repeated to
obtain a plot of flutter speed versus Mach number.
Knowing the operating conditions, it is possible to
determine whether flutter will occur within the
operating region and if so, the Mach number and
frequency at flutter. It should be noted that the
analysis of a mistuned cascade requires the
solution of the equations for all phase angles at
one time for a given reduced frequency.

RESULTS AND DISCUSSION

The analysis methods presented earlier are now
applied to investigate the behavior of cascades
oscillating in pitch and plunge. First, unsteady
pressure distributions and loading for selected
cascade configurations are presented and

compared with published results to help validate

the present linearized unsteady Euler solver.
Finally, flutter predictions with and without
mistuning are presented. For the calculation of
unsteady aerodynamic coefficients, first NPHASE,
the non-linear Euler solver is used to generate the
steady solution. This steady solution is then used
as an input to the LINFLX2D to calculate the
unsteady aerodynamic forces due to small
unsteady perturbations in pitch and plunge.

Code Validation

Calculations were made for a flat plate cascade,
and a cascade comprising of airfoils designated as
the tenth standard configuration (C10), Ref. 16.
Both the cascades have a stagger angle of 45
degrees, and a gap to chord ratio (s/c) of unity.
The tenth standard configuration airfoils are
constructed by superposing the thickness
distribution of a modified NACA 5506 airfoil on a
circular-arc camber line. See Ref. 16 for more
details. Two Mach numbers are considered,
M=0.7 and M=0.8 for a reduced frequency of
oscillation based on semichord (k) of 0.5. For
M=0.8, the flow is transonic with a shock at 25%
chord from the leading edge of the aidfoil. The
steady angle of attack is zero for the flat plate
geometry, and ten degrees for the C10 airfoil for
subsonic flow (M=0.7), and thirteen degrees for
transonic flow (M=0.8). A H-grid of 141x41 grid is
used for the study. There are 80 points on the
airfoil, and the inlet boundary is 5 chords from the

'Figure

airfoil leading edge and the exit boundary is 10
chords from the airfoil traiing edge. Some
calculations were also done with a 151x41 grid for
which the inlet and exit boundaries are located at
one chord from the leading and trailing edges
respectively. There are 55 points on the airfoil for
this grid.

Unsteady Aerodynamic Pressures
Subsoni fow

Figure 3a shows the unsteady pressure difference
distribution obtained for the flat plate geometry
operating at M=0.7. The interblade phase angle,
o, is 180 degrees, the reduced frequency of
oscillation based on semichord is 0.5, and the
Mach number of 0.7. The blades are oscillating in
pitch about the midchord. For the inlet Mach
number of 0.7, the flow is shock free. Figure 3a
shows predictions form linear theory (Ref. 3) and
from the present linearized Euler code, LINFLX2D.
The predictions from LINFLX2D correlate well with
the linear theory results.

3b shows the unsteady pressure
distribution obtained for the standard cascade
configuration, C10. The flow to the cascade is at
10 degrees angle of attack. Again, the interblade
phase angle is 180 degrees, the reduced
frequency of oscillation based on semichord is 0.5,
and the Mach number of 0.7. The blades are
oscillating in pitch about the midchord. For the inlet
Mach number of 0.7, the flow is shock free. Figure
3b shows predictions form linear theory (Ref. 3),
nonlinear Euler (Ref. 17) and from the present
linearized Euler code, LINFLX2D. The predictions
from LINFLX2D correlate well with the nonlinear
Euler results. As expected, they show
discrepancy with linear theory since the effects of
airfoil geometry, and angle of attack are not
included in the linear theory.

T nic Inflow

For the standard configuration, C10, and for an
inlet Mach number of 0.8, the flow is transonic with
a normal shock occurring in each blade passage.
The steady angle of attack is 13 degrees. The
steady Mach number distribution for this flow
obtained from NPHASE is shown in Fig. 4a which
shows a normal shock at about 28% of the chord.
Results from the full potential solver, Ref. 19, are
also included for comparison. Both results agree
well, except that the nonlinear steady Euler solver,
NPHASE, predicts the shock location slightly
downstream of that predicted by the full potential



solver of Ref. 19. A shock fitting procedure was
used in Ref. 19, whereas the shock is captured
naturally in the present solver. The unsteady
pressure distribution is shown in Fig. 4b, along
with a comparison with linear theory (Ref. 3) and
from the unsteady nonlinear Euler solver. The
unsteady results are for pitching about mid-chord
with kp=0.5, o©0=180° and amplitude of
oscillation, g ,= 2°. As expected, linear theory
does not show any shock, indicating that unsteady
analysis based on linear theory will not be accurate
for cascade flutter analysis in transonic flow.

Similar results were obtained for plunging motion
for both subsonic and transonic inflows.

Unsteady Aerodynamic Force coefficients

It is the unsteady aerodynamic force coefficients,
unsteady [ift and moment that are obtained by
integrating unsteady pressure differences, that are
used in the flutter and forced response prediction.,
Table 1 shows the unsteady aerodynamic force
coefficients obtained using the Smith code, Ref.
3, and the present LINFLX2D code. Calculations
were also done with the non-linear Euler solver of
Ref. 19. In table 1, the first column shows the
geometry of the airoil studied, the fourth and fifth
columns show the force components for pitching
motion and plunging motion respectively. The
symbols in the second column are ¢ for lift
coefficient, and cm for moment coefficient, with
moment taken about the mid chord (x0=0.5). The

first row shows the calculations for the flat plate

geometry in subsonic flow, the second row for the
airfoil in subsonic flow, and the third row for the
airfoil in transonic flow. The notation indicating the
analysis method is given at the bottom of the table.
The geometry and unsteady conditions are given
on the top of the table.

A comparison of the force coefficients for flat plate
geometry in the first row shows that the prediction
by LINFLX2D are very close to those given by
Smith code. For aflat plate geometry in subsonic
flow, the Smith code gives the exact answer. It is
to be noted that the flat plate is unloaded and
shock free. The values of the force coefficients in
the second row show some difference from the
Smith code, since in LINFLX2D the effect of airfoil
and angle of attack are included. The force
coefficients in the third row include the effect of
shock and its motion in addition to the effects of
airfoil shape and angle of attack. The force
coefficients obtained with LINFLX2D code
compare well with those obtained from a non-linear
unsteady Euler solution, indicating that LINFLX2D

code can be used to analyze cascades in transonic
flow. It is to be noted that with 151x41 grid,
solutions for transonic flow could not be obtained
with LINFLX2D code. It was suggested that for the
LINFLX2D code to work properly, it is better if the
inlet and exit boundaries are at least 5 chords from
the leading and trailing edges respectively (Ref.
20).

Flutter Calculations

As mentioned before, given the unsteady
aerodynamic force coefficients, the MISER code
calculates the aeroelastic stability of tuned and
mistuned cascades oscillating in pitch and plunge.
The aeroelastic stability results from MISER are
presented as a root locus plot, with real part of the
eigenvalue indicating damping and the imaginary
value indicating frequency for all possible
interblade phase angles. In the present study
LINFLX2D is loosely coupled with MISER (Ref. 7)
to calcutate flutter of mistuned cascades. First a
steady solution is obtained from NPHASE for the
required cascade geometry and flow conditions.
With the steady solution as input, LINFLX2D is run
for given a reduced frequency, interblade phase
angle, and mode of interest (pitching or plunging).
The unsteady aerodynamic coefficients obtained
from LINFLX2D are then stored in a data base, and
later used in MISER to calculate the stability
characteristics.

The structural properties are the mass ratio, m, is
258.50, ratio of bending to torsion frequencieswp
/wg is 0.357, the radius of gyration about the
elastic axis in semi-chord units, rg,is 0.5774, with
no structural damping. The elastic axis is at
midchord i.e. ah = 0.0. The distance between the
elastic axis and center gravity, xg is zero,
indicating that coupling between bending and
torsion is very weak and the flutter mode is
dominated by torsional motion. Therefore, only
torsion mode is shown for all the calculations. |t
should be noted that these structural properties
were also used in Refs. 7 and 8.

The following procedure is used for stability
prediction: First MISER is run for the selected
cascade (rotor) using linear theory to identify the
flutter point. Then MISER is run in conjunction
with LINFLX2D data base for this flutter condition,
and the eigenvalues obtained from linear theory
and LINFLX2D are compared.

Flat Plate Cascade

To validate the coupling of the unsteady



aerodynamic coefficients obtained from LINFLX2D
with MISER, a nine bladed cascade with a flat plate
geometry was selected. The fiutter resuits
obtained are compared with those obtained from
linear theory. The gap to chord ratio is unity and
the stagger angle is 45 degrees. For the nine
bladed cascade, for a given reduced frequency,
the unsteady force coefficients have fo be
calculated for the possible interblade phase angles
of 0.0, 40.0, 80.0, 120.0, 160.0, 200.0, 240.0,
280.0, and 320.0 degrees.

Using linear theory, for M=0.7 with elastic axis at

midchord, for the nine bladed cascade mentioned

above, the instability was observed to occur at k, =
0.18 and for a phase angle of 80 degrees.
Therefore, LINFLX2D is run for this value of
reduced frequency, but for al allowable phase
angles, and for both plunging and pitching
oscillations, and a database is prepared. Then
MISER s run to predict stability boundary with the
unsteady aerodynamic force coefficient data base
obtained from LINFLX2D.

The root locus plot showing the real and imaginary
parts of the eigenvalues for the fiat plate geometry
obtained for torsion motion is given in Fig.5. The
unsteady force coefficients for eight phase angles
were obtained with LINFLX2D. For the ¢ =40
degrees, for which acoustic resonance was
expected, the LINFLX2D code did not give a
solution for the grid, oscillation of amplitude, and
time step considered. This case will be studied
further in future. It was noted that for a flat plate
geometry, the computational times were higher
than those for airfoil geometry (presented below).
Figure 5 shows the comparison between
predictions from linear theory and from LINFLX2D.
It can be seen from Fig. 5 that LINFLX2D compares
very well with linear theory results for the flat plate
geometry. The plot shows that the cascade is
unstable for the properties considered.

Mistuned Cascade

Results are presented now for cascades with
mistuning. The type of mistuning considered is
the one in which the odd and even numbered
blades have different torsional frequencies, also
known as alternate blade mistuning. This has
been studied in Refs. 7 and 8 with 1% and 1.5%
alternate mistuning. It is to be noted that in the
case of 1% mistuning, the frequency ratiowy / ©,

is 1.005 for all the even blades, and is 0.995 for all
the odd blades. The study in Ref. 7 and 8
considered a 56 bladed cascade, and showed that
alternate mistuning has a considerable effect on
stability. A 12 bladed cascade is considered for
the present study, to limit the computational time.
MISER was run first for this case as a tuned
cascade with finear theory, for M=0.7. t was found
that the cascade is unstable for k, = 0.1 and o =
60°. This value of k, = 0.1 is used for all the
calculation presented below. It should be noted
here that for this cascade acoustic resonance was
expected for s = 0° and 30°. However, for C10
airfoil geometry unsteady solutions were obtained
with LNFLX2D for these interblade phase angles,
unlike for the flat plate geometry mentioned in the
previous section.

First, the amount of mistuning required to change
the root locus plot is investigated i.e. whether the
effects of 1% and 1.5% alternate as reported in
Ref. 7 also occurs for this cascade. It should be
noted here that the results from the present
MISER code were checked with those given in
Ref.7 for the 56 bladed cascade before starting
the current calculations. Figure 6 shows the root
locus plot with 1%,1.5%,5%,10% and 20%
alternate mistuning for the flat plate geometry for
M=0.7 and k, = 0.18. It can be seen that an
alternate mistuning of 1-10% did not show any
effect on the eigenvalues. Only 20% alternate
mistuning showed some effect on the
eigenvalues. This is in contrast to the level of
mistuning used in Ref. 7. However, Ref. 7 has
considered a 56 bladed cascade in incompressible
flow for which the cascading effect is much
stronger.

However, the large amount of mistuning required
here to have a significant effect on the
eigenvalues (shown in Fig. 6) is mot surprising.
Similar values of mistuning have been used in Ref.
8. That study used an amount of 1 to 20%
mistuning. An examination of Fig. 11 of Ref. 8
showed that the effect of alternate mistuning
decreased with increasing Mach number. In light
of study of Ref. 8 and the present results, it is
concluded that for the Mach numbers considered
here a mistuning of more than 20% has to be used
to show a significant effect of mistuning.
Therefore the rest of the calculations are done with
20% alternate mistuning.

Figure 7 shows the root locus plot obtained for the



C10 airfoil for both tuned and 20% alternate
mistuning, for M=0.7 and k, = 0.1. Comparison
with fiat plate geometry is also shown. The
following are noted form Fig. 7: (1) For the tuned
cascade both flat piate geometry cascade and C10
airfoil cascade are unstable for 6=60°. However,
the C10 cascade is less unstable than the flat plate
cascade. This indicates that for the tuned cascade
the airfoil steady loading effects are stabilizing,
compared to that for a flat plate airfoil; (2) the
addition of 20% alternate mistuning moved the
cascade with C10 geometry from an unstable to a
stable condition, where as the flat plate cascade
remained unstable; (3) It can also be seen that from
the root locus plot for the C10 airfoil with
mistuning, two frequencies are identified with
0=240° mode, whereas oc=60° mode is completely
missing. The reason for this behavior is under
investigation.,

The root locus plot for M=0.8 and k, = 0.1 is shown
in Fig. 8. The following are noted form Fig. 8:
(1)the tuned flat plate geometry cascade was
unstable for 6=90° and C10 airfoil cascade was
stable. This indicates that the airfoil steady loading
effects are stabilizing for the tuned cascade,
compared to that for a flat plate airfoil; (2) the
addition of alternate mistuning made the C10
geometry more stable, where as the flat plate
cascade remained unstable; (3) For the C10 airfoil
it was noted that for tuned case both ¢=90° and

6=120° modes have the same amount of damping,
but with mistuning, 0=90° mode became more

stable than the 6=120° mode.

CONCLUDING REMARKS

A two dimensional unsteady linearized
aerodynamic Euler solver, LINFLX2D was used to
calculate unsteady aerodynamic forces on

oscillating cascades. The unsteady aerodynamic
forces were used in the aeroelastic stability code
MISER to calculate flutter characteristics. Results
were presented for cascades in subsonic and
transonic flow. The linearized Euler solver showed
good correlation with the published data. The
following were observed during the study.

(1) the airfoil steady loading stabilized the cascade
7 for the Mach numbers considered.

(2) A relatively high amount of alternate mistuning
is required to have an effect on the stability of the
cascade for the Mach numbers considered.

(3 An accurate steady solution called “low loss
solution “ is required for the unsteady solver
LINFLX2D to work. This requires a considerable
amount of computational time. This may be the
biggest drawback of using this code in a design
cycle.

(4) The success of getting an unsteady solution
from LINFLX2D also depended on the grids used.

(5) For predicting flutter boundary, calculations
have to be done for a range of reduced
frequencies. ltis suggested that LINFLX2D data
base be prepared for three or four reduced
frequencies, and then use interpolation for flutter
calculations. These reduced frequency values can
be selected by first running MISER with linear
theory.

(6) The unsteady solution times varied from 20
minutes to 75 minutes on an SGI workstation. This
is directly related to the number of iterations
required for convergence. A solution for flat plate
geometry took more time than for the C10 airfoil
geometry.
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Table 1

Unsteady Aerodynamic Force Coefficients

s/e=1.0,

stagger=45°, 6=180°, k, =0.5, x0=0.5

airfoil=10th standard configuration

plunging pitching
a -3.56752,1.29455 -4.244,.73506
cl b -3.5133,1.2338 -4,1786,.6609
flat plate a 0.559851,-.67647 | .71385,-.87771
M=0.7 b 0.5297,-0.6417 .6780,-.8324
cm
a -3.5675,1.29455 | -4.2439,.73506
cl b -2.5502,-0.0132 | -2.2566,-.1537
c -2.6370,0.0553 -2.3040,-.0487
airfoil d -2.6576,0.0310 -2.4415,-.0362
M=0.7
cm a 0.5595,-.67647 0.71385,-.87771
b .6497,-.3330 0.6001,-0.4540
c .6124,-.3340 0.5513,-0.4406
d .6346,-.3474 0.5917,-0.5108
I a -.47916,2.64057 | -.4467,3.10392
C b * *

. c -2.5945,1.0469 -1.8953,0.8885
airfoil d -2.7240,1.1272 -2.0532,0.9119
M=0.8

a -.46335,0.03245 | -,78786,-.16579
cm b * *

¢ 0.3352,-0.6922 0.2215,-0.6712

d 0.3615,-0.6567 0.2657,-0.6840

a=linear theory, Ref. 3, b=LINFLX2D (155x41 grid)
d=nonlinear unsteady Euler code, Ref. 17

could not get solution with this grid
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c=LINFLX2D (141x41 grid)
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Abstract

A flutter and forced response analysis system based on
a two-dimensional linearized Euler solver was
developed. The ASTROP2 code, an aeroelastic
stability analysis program for turbomachinery, was
used for this purpose. The ASTROP2 code uses strip
theory to couple a two dimensional aerodynamic
model with a three dimensional structural model.
The code was first modified to include forced response
capability. The unsteady aerodynamic modeling of
the ASTROP2 was also changed to accept the loads
from a linearized Euler solver, LINFLX2D. By

including the unsteady aerodynamic loads from

LINFLX2D, it is possible to include the effects of
transonic flow on flutter and forced response in the
analysis, The updated code, ASTROP2-LE for
ASTROP2 code using Linearized Euler aerodynamics,
is validated by comparing the predictions with those
obtained using linear unsteady aerodynamic solutions.

Introduction

The aeroelastic research program at NASA Glenn
Research Center is focused on flutter, and forced

response analysis of turbomachinery. An overview of

this research was presented in Ref. 1. The review
showed that a range of aerodynamic and structural
models have been used to obtain the aeroelastic
equations. Both time and frequency domain methods
have been used to obtain unsteady aerodynamic forces
and to solve the aeroelastic equations. It was noted
that time domain methods require large computational
time compared to frequency domain methods, and
should only be used when non-linearities are expected,
and when the need justifies the cost.
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This work is declared a work of the U.S.
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Two approaches were used in obtaining the unsteady
aerodynamic forces using frequency domain methods.
In the first approach, Ref. 2, the unsteady
aerodynamic equations are linearized about a uniform
steady flow, there by neglecting the effects of airfoil
shape, angle of attack and thickness. The unsteady
aerodynamic models developed in Refs. 3-6 based on
this approach are used in Refs. 7-8 to study the flutter
and forced response analysis of a compressor rotor
using a typical section structural model. Some of
these models were also integrated with a three
dimensional structural model using strip theory in
Ref. 9. However, methods developed by this
approach are restricted to shock-free flows and lightly
loaded blade rows.

In the second approach, Ref. 10, the unsteady flow is
regarded as a small amplitude perturbation about a
non-uniform steady flow. The unsteady non-linear
aerodynamic equations are linearized about the non-
uniform steady flow, resulting in variable coefficient
linear unsteady aerodynamic equations, which include
the effects of steady aerodynamic loading due to airfoil
shape, thickness and angle of attack. Following the
second approach, Refs. 11-13 developed a steady and
linear unsteady aerodynamic model based on the
potential equation. This unsteady aerodynamic model
was used to study the effect of steady aerodynamic
loading on flutter stability using a typical section
structural model in Ref. 14.  Subsequently this
aerodynamic model was integrated with a three
dimensional structural model using strip theory in
Ref. 15.

However, the formulation based on the potential
equation requires corrections for entropy and flow
rotation. The Euler equations can be used to correcty
model rotational and entropy effects associated with
strong shocks. Unsteady linearized Euler aerodynamic
models that include the effect of steady aerodynamic
loading were developed in Refs. 16-18. Recently, a
two-dimensional Linearized Euler code, LINFLX2D,
was developed under a NASA contract and has been
reported in reference 19. This code is based on the
non-linear Euler solver developed in Ref. 20. In Ref.



21, the unsteady aerodynamic calculations from
LINFLX2D were coupled with MISER (Ref. 7); a
frequency domain aeroelastic stability and response
code based on a typical section structural model.
Flutter and forced response calculations were presented
for cascades in subsonic and transonic flow, with and
without mistuning,

The aeroelastic formulation in MISER does not
represent the behavior of a three dimensional
structure. An ideal analysis will be to couple a three
dimensional structural analysis with a three
dimensional aerodynamic analysis.  This may be
computationally intensive. An intermediate approach
that couples a two dimensional aerodynamic analysis
with a three dimensional structural model using strip
theory, quasi-3D approach, may be less expensive
computationally. This approach will provide accurate
results except where three dimensional effects
dominate. In turbomachines, where the COmpressors
and turbines are enclosed, three-dimensional effects
may not be strong, and strip theory can be used. The
ASTROP2 code reported in Ref. 9 uses this strip
analysis approach for aeroelastic stability analysis.

The primary objective of the present study is to
develop a quasi-3D aeroelastic code by coupling the
LINFLX2D code with a three dimensional structural
model using strip theory. This effort uses the
ASTROP2 code of Ref. 9 as the basis. The
ASTROP2 code is a frequency domain stability
analysis program, and as mentioned before uses strip

theory to couple a two dimensional aerodynamic

model with a three dimensional structural model. The
present version of ASTROP? has provision for flutter
calculations, but not forced response. During the
course of the research effort, the ASTROP? code is
extended to include forced response calculation. The
resulting code is named ASTROP2-LE for ASTROP2
code using Linearized Euler aerodynamics.  Brief
descriptions of the formulation and method of
analysis are given in the next section, followed by
results and discussion,

Formulation

The aeroelastic formulation using the linearized
approach requires solutions from two aerodynamic
codes and a solution from a structural dynamic
analysis code. The steady aerodynamic loads are
obtained from a non-linear Euler solver, NPHASE,
and the unsteady loads are obtained from LINFLX2D.
The structural dynamic solution can be obtained from
any finite element code, analytical solutions or
measured data. The salient features of both the
aerodynamic codes, and the aeroelastic formulation are
descnibed below.

Aerodynamic model
Non-linear Steady Eul lver S

The steady aerodynamic model is based on the
unsteady, two dimensional, non-linear Euler
equations. The equations in conservative differential
form are solved in a time dependent body-fitted
curvilinear reference frame. This transformation
process and the ensuing numerical method are
presented in detail in Ref. 20. The equations are
discretized and solved using a finite volume method
using a combination of flux difference splitting and
flux vector splitting scheme. In addition, limiters are
used to control dispersive errors commonly
encountered with higher order schemes. The steady
solutions presented herein are obtained using the basic
implicit scheme developed in Ref. 20, which is third
order accurate spatially and second order accurate in
time.

Linear Unsteady Euler Solver, LINFLX2D

To obtain the linearized unsteady Euler equations, the
independent variables in the unsteady non-linear Euler
equations are expanded in an asymptotic series of the
form

U =U(x) +u(x(x,t),t) + higher order terms ¢))

Assuming the unsteady excitations are harmonic in
time, and with the first order variable to be
represented as complex valued, the above equation can
be written as

U = U(x) + Re[u(x)exp(i 0t)] + higher order terms (2)

Here, the term U(x) is of order one and the second
term is of the order £.

Substituting the expansion of Eq. 2 in the non-linear
unsteady Euler equations, and equating terms of like
power in £, and neglecting terms of second and
higher order in £, nonlinear steady equations and
linear variable coefficient unsteady equations are
obtained.

For harmonic blade motions with constant phase
angle between adjacent blades (interblade phase angle),
the values of interblade phase angle ( g ) that can

occur are given in Ref. 22 as

o,=2nr/N r=0,1,2,....,N-1 3)
where N is the number of blades in the cascade. In a
time domain approach, the number of blocks required
depends on the interblade phase angle, and small
phase angles may require large number of blocks to



calculate the unsteady aerodynamic forces. However,
with the linearized approach, the periodic conditions
are applied on a single extended blade passage region
1.e., a region of angular pitch,

6=2n/N @

In solving the linear unsteady equations, the
independent variables are regarded as pseudo time
dependent. This allows solutions to be determined
using conventional time marching algorithms to
converge the steady and the complex amplitudes of
the unsteady conservation variables to their steady
state values. For more details, see reference 19.

Aeroelastic Model

As mentioned before, the primary objective of the
present study is to couple the LINFLX2D solver with
a three dimensional structural model using strip
theory. For this effort, the ASTROP2 code of Ref. 9
is selected as the basis.

The ASTROP2 code uses strip theory to couple a two
dimensional aerodynamic model with a three
dimensional structural model. The present version of
ASTROP2 can solve only for flutter and not for
forced response. For clarity and completeness, the
aeroelastic formulation in ASTROP2 is given here
with extension to include forced response calculation.

ASTROP2 uses the normal mode approach for
aeroelastic analysis. The equations of motion for the
s" blade of the cascade, Fig. 1a, can be written as

[ Ha}+[K.Ha) <[} +{an} &

where [Mg-r] and [Km] are generalized mass and

stiffness matrices, which are diagonal, {qx} is the

generalized displacement vector, and [A_‘] is the
motion dependent generalized aerodynamic load
matrix, and {ADJ} is the motion independent

generalized aerodynamic load vector. The motion
dependent forces cause flutter, and motion independent
forces cause forced response (forced vibration). The
matrices [M ], [K ] and [A_t] are of NM x NM

&8 £
size, {q.‘,} and {ADX} are of NM x 1 size, where
NM is the number of normal modes used in the

analysis. The matrices {M x-r] and [K x-\‘] are given

by a free vibration analysis. It should be noted that
in the stiffness matrix, the structural damping could
be added by multiplying the stiffness coefficients by

(142i G ), where ¢ is structural damping ratio. The
expressions for [A_r] and {ADJ} are given below.

In ASTROP? the blades are divided into strips where
the aerodynamic forces are calculated. Each strip has
two degrees of freedom, a plunging displacement, h,
motion perpendicular to chord, and a pitching
(torsion) displacement, a, rotation about the leading
edge of the strip (Fig. 1b).

Using the normal modal values obtained from a free
vibration analysis, the equivalent h and o for k™ strip
of the s™ blade are given as summation of normal
modes as

{ue}= {h } = [h'hz P ]{qx ISLAAG

o |oa,...oy,

As mentioned before, an N blade cascade can vibrate
in N interblade phase angles given by Eq. 3. The
aerodynamic forces at each strip for the r™ interblade
phase angle mode can be written as a sum of motion
dependent and motion independent forces as

[L.]=[L1,]+{L2,} (7.1)
where

l r l ar l r l ar
= Joh =[] e

l
{L2,}= {l‘""’} (7.2)

where the subscript ‘w’ refers to force from wake i.e.
motion independent aerodynamic forces. The values
of Lyws bierr e luges bper and 1 for a given
interblade phase angle are calculated from the unsteady
aerodynamic forces obtained from linear theory, Ref.

4 or LINFLX2D, Ref. 19,

The generalized aerodynamic matrices [Axr] and
{AD‘,} for the entire blade are given by

[4,]= [T (21, Jds - i[Am]dsk @1

L
{ap,}=[[w]{L2,}das=[[4D,Jas 2
where L is the blade length and Toindicatcs transpose.



Integrals in Eq. 8 are evaluated using numerical
integration as

NSTRIP
[Asr] = Z [A.rrk }isk (9 1)
k=1
NSTRIP
{AD,}= ¥ {aD,,}ds, ©9.2)
k=1

where ds, is the strip width, and NSTRIP is the
number of strips the blade is divided into.

For a tuned cascade, in which all the blades are
identical structural properties, the interblade phase
angle modes are uncoupled. In this case, the
aeroelastic modes consist of individual blades
vibrating with equal amplitudes with a fixed
interblade phase angle between adjacent blades.
Hence, for this problem, the motion of the typical
blade is written as

{qx} - {qos}eiax - {qar}eiaxeia,.s (10)

The equations of motion for the blade for each
interblade phase angle can be written as

_a)z[ng] {qar}ei(aua,.v) +[K3J]{qar}ei(ax+o,s)

= a)2[Ar] {qar}ei(ana,s) +w2[ADr]ei(ar+a,:)
(11

The matrices [Mgs], [K S], and [Ar] are of NM x

P
NM size, {qa,}and {AD,} are of NM x 1 size.

Since the blades are identical, the same equation is
obtained for each blade; equation 11 can be solved for
N different values of the interblade phase angle given
by Eq. 3.

Dividing both sides by an assumed frequency, wg ,

dropping the subscripts, and rearranging, the
equations can be written as

[[P1-7[0l{q. } =r{AD} (13)

where

[P1=wi§[1<1

[Q]=[[M]+[A]] (14)
and

r-)

For a stability calculation (flutter), the motion-
independent forces (AD} are set to zero and the
eigenvalue problem is obtained as

[[P1-7IQl){4..} = {0} (15)

The solution of the above eigenvalue problem results
in NM complex eigenvalues of the form

i(£)=iﬁ=p+iv (16)
(00

The real part of the eigenvalue ( M) represents the
damping ratio, and the imaginary part (V ) represents
the damped frequency; flutter occurs if 1220 for any
of the eigenvalues. The eigenvalue problem is solved
for each of the N permissible values. The critical
phase angle is identified as the one that results in the
lowest flutter speed.

The aeroelastic response of the blades induced by
wakes is calculated from equation (13) as

{9..}=-{[P]-7[o]] 'v{AD} a7

Stability calculation procedure

The aerodynamic coefficients are calculated before the
eigenvalue problem can be set up and solved. Since
the unsteady aerodynamic coefficients depend on the
frequency of oscillation, it is necessary to assume a
frequency @, (actual input to the code may be the
reduced frequency of blade vibration based on chord,
k., =wc/U, where Uis the free stream velocity) in
advance to be able to calculate the aerodynamic
coefficients. The aerodynamic coefficients are
functions of inlet Mach number M, and interblade
phase angle’,, in addition to cascade geometric
parameters. In the present study, for a given inlet
Mach number, the reduced frequency is varied until
the real part of one of the eigenvalues [ becomes
zero while the real parts of the remaining eigenvalues
are negative. The assumed flutter-reduced frequency
kef and the calculated flutter frequency V, are both

based on @,. Thus, these two can be combined to
eliminate @, and the flutter speed is obtained,
namely, V, c@, /knf. Since the inlet Mach number

is known, this flutter speed gives the inlet condition
(speed of sound, a.. ) at which the cascade will be



neutrally stable for the given Mach number. This
procedure can be repeated to obtain a plot of flutter
speed versus Mach number. Knowing the operating
conditions, it is possible to determine whether flutter
will occur within the operating region and if so, the
Mach number and frequency at flutter.

nalysis procedure

The flutter and forced response analysis in
ASTROP2-LE consists of running five codes, @ a
structural dynamic analysis code, (I) 2DSTRIP, (Im
NPHASE, (IV) LINFLX2D, and (V) 2DASTROP. It
is to be noted that ASTROP2 code is a combination

of 2DSTRIP and 2DASTROP codes. The analysis

procedure is explained in five steps. In step 1 a
vibration analysis is performed for the blade. The
output is natural frequencies and mode shapes. This
output is used by 2DSTRIP. In step 2, strips are
selected, and 2DSTRIP is run to calculate relative
Mach numbers, sweep angles, stagger angles, chord
values, and strip widths at these strips. During this
run, the three dimensional modal values are also
interpolated at each strip, and equivalent pitching and
plunging modal values are calculated. In step 3, a
steady aerodynamic solution at these strips is obtained
from NPHASE. The steady aerodynamic solution is
written as a database. Step 4 consists of running
LINFLX2D for assumed number of reduced
frequencies, interblade phase angles, for pitching and

plunging modes. The analysis is carried out for unit

amplitude of vibration for all the strips, and the
unsteady aerodynamic solutions are stored as a
database. In step 5, the 2DASTROP code is executed
to calculate flutter using the eigenvalue approach and
to calculate forced response.
ategy to reduce n of calculation
The main purpose of the present effort is to accurately
couple the unsteady aerodynamic solutions from
LINFLX2D to ASTROP2 code. In order to reduce
the number of calculations, the following
observations are made on the number of calculation
required for flutter.

Let each blade be divided into NSTRIP number of
strips. In general, for a given inlet Mach number, the
flow conditions, (relative Mach number and angle of
attack), and the geometric conditions, (gap to chord
ratio, stagger angle, and airfoil shape) are different at
these strips.  Therefore, the number of steady
aerodynamic solutions (number of NPHASE funs)
required is (NSTDY = NSTRIP * NMACH ), where
NMACH is the number of inlet Mach numbers to be
considered in the study. By considering a straight,
untapered stator blade, the flow and geometric
conditions will be same at all strips, reducing the

number of steady aerodynamic calculations to
NMACH, i.e. NSTDY=NMACH.

In the present study two inlet Mach numbers will be
considered i.e. NMACH=2. Therefore the number of
study runs is NSTDY = 2*NSTRIPS. Assuming
identical flow and geometric conditions, the number
of NPHASE (study solution) runs reduces to NSTDY
=2.

In the case of the unsteady aerodynamic solution, two
other parameters, reduced frequency ( k. ) and

interblade phase angle ( o ) have to be considered. If

NREDF is the number of reduced frequencies, and
NSIGMA is the number of interblade phase angles,
then the number of unsteady solutions for flutter
(number of LINFLX2D runs) is, NUSTDY =
NMACH *NSTRIP *NSIGMA *NREDF. However,
if same geometric and flow conditions are assumed at
all strips, NUSTDY is reduced to NUSTDY =
NMACH*NSIGMA*NREDF. It is to be noted here
that NSIGMA is equal to the number of blades of the
cascade,

For NMACH=2, the number of unsteady runs,
NUSTDY= 2*NSTRIP*NREDF*NSIGMA. Again
assuming identical flow and geometric conditions,
NUSTDY=2*NREDF*NSIGMA.

Results and Discussion

Results presented here are meant to show that the
analysis procedure given in the previous sections has
been implemented correctly in LINFLX2D and
ASTROP2. Therefore, calculations are made for a
non-rotating cantilevered blade, representing a stator
blade of a turbomachinery component. Results are
presented for an assembly of 12 tuned blades on a
rigid disk coupled only aerodynamically.  Similar
geometry was considered in Ref. 23. Two inlet Mach
numbers are considered M=0.7 and 0.8. Two airfoils,
a flat plate and the tenth standard configuration, C10
airfoil cross sections, Ref. 25, are considered. The
gap to chord ratio (s/c) is 1.0 and the stagger angle is
45 degrees. For the C10 airfoil and for M=0.8, the
flow is transonic with a shock near the quarter chord.

Code Validation:
ASTROP?2 code:

The ASTROP2 code was validated for flutter
prediction in Ref. 9 by calculating the flutter
boundary of the SR3CX2 advanced propeller. The
vibration characteristics of the propeller blade were
obtained from the finite element structural analysis
code NASATRAN. Linear theory of Ref. 5 was used
for calculating the unsteady aerodynamic forces. The



predicted flutter Mach number was conservative
compared to the measured value. For more details on
the ASTROP? code, see references 9, 24 and 25.

LINFLX2D code:

To validate the LINFLX2D code, unsteady
aerodynamic pressure differences were calculated for a
flat plate cascade, and a cascade comprising of C10
airfoils with inflow Mach numbers of M=0.7 and
M=0.8, for a reduced frequency of oscillation based on
chord (k, ) of 1.0. The unsteady pressure difference

is non-dimensionalized by (upper surface pressure-
lower surface pressure) / (airdensity*U**2*amplitude
of oscillation ). An H-grid of 141x41 grid is used for
the study. There are 80 points on the airfoil, and the
inlet boundary is 5 chords from the airfoil leading
edge and the exit boundary is 10 chords from the
airfoil trailing edge. Steady aerodynamic solations
were obtained for these Mach numbers using
NPHASE before running LINFLX2D.

Subsonic Inflow

Figure 2a shows the steady Mach number distribution
obtained for the C10 airfoil cascade for an inlet Mach
number, M=0.7. The flow to the cascade is at 10
degrees angle of attack. It can be seen that for this
Mach number the flow is shock free. The unsteady
pressure difference distribution for an interblade phase
angle, 0, of 180 degrees is shown in Fig. 2b. The
blades are oscillating in pitch about the midchord.
Figure 2b shows predictions from linear theory ( Ref.
4 ) for flat plate geometry, from the nonlinear Euler
(Ref. 20) and the linearized Euler code, LINFLX2D
for the C10 airfoil geometry. The predictions from
LINFLX2D correlate well with the nonlinear Euler
results. As expected, the results show significant
difference with linear theory, because the effects of
airfoil geometry, and angle of attack are not included
in the linear theory.

Figure 2b also shows the unsteady pressure difference
distribution obtained with LINFLX2D for the flat
plate geometry, and its correlation with linear theory.
It can be seen that for the flat plate geometry results
from linear theory and LINFLX2D match very well.
At M=0.7 the flow field is linear; hence, linear theory
and the linearized Euler results are expected to
correlate well. This validates the LINFLX2D code for
subsonic flows.

[ransonic Inflow

For the C10 airfoil cascade geometry, and for an inlet
Mach number of 0.8, the flow is transonic with a
normal shock occurring in each blade passage. The
steady Mach number distribution obtained from

NPHASE is shown in Fig. 3a for a steady angle of
attack of 13 degrees. A normal shock occurs on the
suction surface at about 28% of the chord. Results
from the full potential solver, Ref. 12, are also
included for comparison. Both results agree well,
except that the nonlinear steady Euler solver,
NPHASE, predicts the shock location slightly
downstream of that predicted by the full potential
solver of Ref. 12. A shock fitting procedure was
used in Ref. 12, whereas the shock is captured
naturally in NPHASE.

The unsteady pressure distribution is shown in
Fig. 3b, along with a comparison with linear theory
(Ref. 4) and the unsteady nonlinear Euler solver. The
unsteady results are for pitching about mid-chord with
k.=10, 0 =180° and amplitude of oscillation,

&y, =2°  As expected, linear theory does not show

any shock, indicating that unsteady analysis based on
linear theory will not be accurate for cascade flutter
analysis in transonic flow. Some discrepancy is seen
between the unsteady results obtained from
LINFLX2D and from the unsteady nonlinear Euler
solver. For the transonic flow case the following
factors may have more effect than for in subsonic
case: (1) grids used, (2) accuracy lost when time series
data is processed to obtain frequency data or (3) the
steady solution on which LINFLX2D based is not a
low loss solution. Even though these issues need
separate study, Fig. 3b shows a fair correlation
between LIFLX2D results and non-linear unsteady
Euler.

Similar results were obtained for plunging motion for
both subsonic and transonic inflows.

Stability and Response Calculations

As mentioned before, a 12 blade stator is considered
for stability and response calculations. Since the
main aim of this paper is to demonstrate the
ASTROP2 and LINFLX2D code coupling, analysis is
carried out for an assumed geometry of straight,
untwisted stator blades at two inlet Mach numbers,
0.7 and 0.8. This reduces the number of steady runs,
NSTDY, 2 (one for M=0.7 and one for M=0.8) and
the number of unsteady runs, NUSTDY, to
24*NREDF for a 12 blade cascade. The same grids
that were used for the unsteady validation and the
NPHASE steady solution obtained in the previous
section were used again.

The blade is divided into 10 strips (NSTRIP=10).
Table [ shows the aerodynamic input parameters, and
table 2 shows the modal values used in this study.
These are same as those used in Ref. 23. The modal
values at the strips are used for generalized force
calculation. Two modes are used in the analysis.



The first mode is a pure torsion mode and the second
mode is a coupled bending-torsion mode. The natural
vibration frequencies are 81.376HZ and 148.02 HZ

respectively.
tability calculati

The unsteady aerodynamic force coefficients are
calculated using LINFLX2D for harmonic blade
vibration in plunging and pitching modes for a
reduced frequency, k., of 0.2 based on chord. The

c
calculated unsteady force coefficients are used by
2DASTROP code to calculate the elements of [A].
With identical flow and geometric conditions, the
only contribution to the generalized aerodynamic force
matrix is due to the different modal values at different
strips.  The reduced frequency used to calculate the
unsteady aerodynamic force coefficients, k=02,

corresponds to a frequency of 96.07 HZ.

Figure 4 compares the root locus plot of the
eigenvalues obtained from LINFLX2D with that
obtained using linear theory unsteady aerodynamics
for a flat plate geometry. The plot is shown for the
first mode for M=0.7. Good correlation is observed.
At M=0.7 the flow field is linear hence, linear theory
and linearized Euler are expected to correlate well with
each other. The linear theory unsteady aerodynamic
code was an integral part of ASTROP2, and
LINFLX2D is the new code that is coupled with
ASTROP2. The root locus plot comelation shows
that the coupling of the LINFLX2D unsteady
aerodynamic database to ASTROP? is accurate. It is
to be noted that since the first mode is a pure
torsional mode, the frequency of the aeroelastic
system is close to the first natural frequency of the
blade.

To explore the effects of airfoil shape and transonic
flow the analysis was carried out with the C10
geometry and for M=0.7 and 0.8. Figure 5 shows the
root locus plot for the first mode at an inflow M of
0.7 for the flat plate and C10 airfoil geometries. It

can be seen that the blade is more unstable when the

effect of airfoil geometry is included.

The root locus plot for the first mode for M=0.8 is
shown in Fig. 6. Here the root locus plot shows the

effect of both airfoil shape and transonic flow effects. B

It is seen that the blade is slightly more unstable than
in figure 5 when the effects of airfoil geometry, and
shock are included.

Response Calculations

The response of the blade to a vortical disturbance is
calculated for flat plate geometry and C10 geometry
and compared with that obtained from linear theory.

In general the response calculation can be done by
including the motion dependent aerodynamic matrix,
[A], which adds the contribution of aerodynarnic
damping to the response. The forced response is
usually calculated for an aeroelastically stable system
(positive aerodynamic damping), and the contribution
of [A] to response can be ignored.  For the
calculations presented here, the contribution of [A] is
neglected. However, a structural damping ratio of
0.002 is added.

Figure 7 shows the tuned aeroelastic response for r=6
ie. ¢ =180 degrees for flat plate geometry. The
unsteady aerodynamic coefficients are obtained at
ke =1.0 for M=0.7. Calculations are done with a

155x41 grid for which the inlet and exit boundaries
are located at one chord from the leading and trailing
edges respectively. There are 55 points on the airfoil
for this grid. The forcing frequency range investigated
is limited to a small range around the 1* mode
frequency. For the tuned cascade all the blades will
have equal amplitudes. The amplitude of response is
a function of the frequency ratio, ® / ®,. Figure 7
shows the Ist generalized degree of freedom Qql
response obtained using linear theory and present
LINFLX2D code. It can be seen that calculations
from linear theory and from LINFLX2D are identical
indicating that the coupling of LINFLX2D
coefficients to ASTROP2 code for response
calculations is also accurate.

Figure 8 shows the q1 response obtained for the C10
airfoil for M=0.7. Comparing the response of CI10
with that of flat plate, it can be seen that the response
has increased about 140%. This is due to high steady
loading on the airfoil.

Figure 9 shows the ql response obtained for the C10
airfoil for M=0.8. Comparing the response of C10
with that of flat plate, it can be seen that the response
has increased to only about 68%. Observing from
Fig 8 that the airfoil shape increased the response to
about 140%, the decrease in the response in Fig 9 can
be attributed to the presence of shock. However, the
flow being transonic, it is planned to check the
present calculations by running LINFLX2D for a
different grid.

cluding Remark

The unsteady linearized Euler aerodynamic solver,
LINFLX?2D, has been successfully coupled with the
ASTROP2 aeroelastic analysis code. The resulting
code, ASTROP2-LE, is validated by comparing
predictions from linear theory for flat plate geometry.
Comparisor: was done for both fiutter and forced
response. Results were also presented for cascades in
subsonic and transonic flow for a standard cascade



section known as C10 geometry. The following were
observed during the study.

(1) The steady loading due to the airfoil shape, angle
of attack destabilized the cascade for the Mach
numbers considered.

(2) The steady loading due to the airfoil shape, angle
of attack increased the blade response for subsonic
flow and decreased response for transonic flow
compared to that for a flat plate.

(3) An accurate steady solution called “low loss
solution “ is required for the unsteady  solver
LINFLX2D to work. This requires a considerable
amount of computational time. This may be the
biggest drawback of using this code in a design cycle.

(4) The success of getting an unsteady solution from
LINFLX2D also depended on the grids used.

(5) It is to be noted that the number of LINFLX2D
solutions required is directly related to number of
strips. Care has to be taken in selecting the number
of strips to reduce the number of calculations.

(6) For predicting the flutter boundary, calculations
have to be done for a range of reduced frequencies. It
is suggested that a LINFLX2D database be prepared
for three or four reduced frequencies, and then
interpolation be used for flutter calculations. These
reduced frequency values can be selected by first
running ASTROP2-LE with linear theory.

(6) The unsteady aerodynamic solution times vared
from 20 minutes to 75 minutes on an SGI
workstation. This is directly related to the number of
iterations required for convergence. A solution for
flat plate geometry took more time than for the C10
airfoil geometry.

(7) The LINFLX2D code can be used with any
aeroelastic code that uses a typical section aeroelastic
model as its basis.
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Tablel: Aerodynamic Input Parameters at the Strips
Atmospheric pressure (psi)=13.1023; Speed of sound (fps)=1130.0

Strip Index | Stagger Angle Chord Length Gap/Chord Radius Strip width

{Degrees) (Inches) Ratio {Inches) (inches)
1 45.0 3.145 1.0 5.407 0.1330
2 45.0 3.145 1.0 5.540 0.1335
3 45.0 3.145 1.0 5.674 0.1335
4 45.0 _3.145 1.0 5.807 0.1335
5 45.0 3.145 1.0 5.941 0.1335
6 45.0 3.145 1.0 6.074 0.1335
7 45.0 3.145 1.0 6.208 0.1335
8 45.0 3.145 1.0 6.341 0.1335
9 45.0 3.145 1.0 6.475 0.1335
10 45.0 3.145 1.0 6.608 0.0669




Table 2: Mode shapes and frequencies used

in the study

Table 2.1: Mode 1: natural frequency=81.376 HZ

Table 2.2: Mode 2: natural Jrequency=148.02 HZ

Strip Index | Bending Torsion
1 0.0 0.328
0.0 0.444
3 0.0 0.584
4 0.0 0.627
5 0.0 0.693
6 0.0 0.742
7 0.0 0.793
8 0.0 0.889
9 0.0 0.937
10 0.0 1.000
Y

Figure 1a. : ASTROP2 coordinate system for a

rotating blade

Strip Index_| Bending Torsion
1 -0.082 0.329
2 -0.087 0.446
3 -0.070 0.586
4 -0.058 0.630
5 -0.034 0.696
6 0.0 0.745
7 0.076 0.796
8 0.203 0.892
9 0.358 0.940
10 0.502 1.003
n ,/— Midchard
//

—

[
Undaflected

Deflected

Figure 1b. : Section A-A showing rigid pitching (o)
and plunging (h) motions for the strip ( reference axis

=leading edge)
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Abstract

This paper describes the development of LINFLUX-
AE, a turbomachinery aeroelastic code based on the
linearized unsteady 3D Euler solver, LINFLUX. The
steady solution, required by LINFLUX is obtained
from the nonlinear Euler/Navier Stokes solver
TURBO-AE. The paper briefly describes the salient
features of TURBO-AE, LINFLUX and the details of
the aeroelastic extension. The aeroelastic
formulation is based on a modal approach. The
unsteady aerodynamic forces required for flutter and
forced response are obtained by running LINFLUX
for each mode for each interblade phase angle and for
a given frequency. An eigenvalue formulation is
used for flutter analysis. The forced response is
calculated from the modal summation of the
generalized displacements. The NASA / GE Energy
Efficient Engine (E- cubed) fan configuration is
chosen as a test case and the results are compared
with those obtained from TURBO-AE and
ASTROP2.

Introduction

An overview of the aeroelastic analysis methods for
turbomachines, Ref. 1, shows both time and
frequency domain methods have been used to obtain
unsteady aerodynamic forces and to solve the
aeroelastic equations. It was noted that time domain
methods require large computational times compared
to frequency domain methods, and should only be
used when non-linearity’s are expected, and when the

* Member A[AA
+ University Distinguished Professor, Member AIAA
++ Research Engineer, Member AIAA

This work is declared a work of the U.S. Government and is
not subjected to copyright protection in the United States

need justifies the cost. Two approaches were used in
obtaining the unsteady aerodynamic forces using
frequency domain methods. In the first approach,
Ref.2, the unsteady aerodynamic equations are
linearized about a uniform steady flow, thereby
neglecting the effects of airfoil shape, incidence and
thickness. The unsteady aerodynamic models
developed in Refs. 3-6 based on this approach were
used in Refs. 7-8 to study the flutter and forced
response analysis of a compressor rotor and propfans.
However, methods developed by this approach are
restricted to shock-free flows through lightly loaded
blade rows.

In the second approach, Ref. 9, the unsteady non-
linear aerodynamic equations are linearized about the
non-uniform steady flow, resulting in variable
coefficient linear unsteady aerodynamic equations,
which include the effects of steady aerodynamic
loading due to airfoil shape, thickness and angle of
attack. Following the second approach, steady and
linear unsteady aerodynamic models have been
developed based on the potential equation, Refs. 10-
12. This unsteady aerodynamic model was integrated
with a three dimensional structural model using strip
theory in reference 13.

The formulation based on the potential equation
requires corrections for entropy and rotational flow.
The Euler equations can be used to comrectly model
rotational and entropy effects associated with strong
shocks. Unsteady linearized Euler aerodynamic
models that include the effect of steady aerodynamic
loading were developed in Refs. 14-16. Recently,
two and three-dimensional linearized Euler codes
named respectively LINFLUX2D and LINFLUX
were developed in references 17 and 18 under a
NASA contract.  These codes were based
respectively on the non-linear Euler solver developed



in Ref. 19 and Refs. 20-21. In Ref. 22, the unsteady
aerodynamic calculations from LINFLUX2D were
used with MISER (Ref. 7), an aeroelastic stability
and response code based on a typical section
structural model. Flutter and forced response
calculations were presented for cascades in subsonic
and transonic flow, and with and without mistuning.
However, the aeroelastic formulation with MISER
does not represent the actual behavior of a three
dimensional structure. An ideal analysis will be to
couple a three dimensional structural analysis with a
three dimensional aerodynamic analysis.

The primary objective of the present study is to
develop a 3D-aeroelastic code by coupling the 3-D
linearized Euler analysis code, LINFLUX of Ref. 18,
with a three-dimensional structural dynamics model.
A modal approach will be used to do the flutter and
response analysis. The resulting code will be called
LINFLUX-AE to indicate the AeroElastic extension

to LINFLUX code. Brief descriptions of the

formulation and method of analysis are given in the
next section, followed by results and concluding
remarks.

Formulation

The aeroelastic formulation involves solutions from
three models: a steady aerodynamic model, a
linearized unsteady aerodynamic model and an
aeroelastic model coupling the unsteady aerodynamic
solution with the structural dynamic solution. The
aerodynamic models and the aeroelastic formulation
are described in this section.

Aerodynamic models
Non-linear Steady Euler Sojver

The steady aerodynamic loading required for the

linearized solver, LINFLUX, is obtained from the 3D

Euler / Navier-Stokes solver TURBO-AE, Ref, 23. A
very brief description of the TURBO code is
presented in this section. Additional details
regarding the code are available in Refs. 20-21 and
23.

The TURBO code was originally developed in Ref.
20 as an inviscid flow solver for modeling the flow
through multistage turbomachinery. It has the
capability to handle multiple blade rows with even or
uneven blade count, stationary or rotating blade rows
and blade rows at an angle of attack. Multiple blade
passages are included in the calculation, when

required. Additional developments were made in
Ref. 21 to incorporate viscous terms into the model.
The code can now be applied to model realistic
turbomachinery configurations with flow phenomena
such as shocks, vortices, separated flow, secondary
flows, and shock and boundary layer interactions.

The code is based on a finite volume scheme. Flux
vector splitting is used to evaluate the flux Jacobians
on the left hand side of the governing equations and
Roe's flux difference splitting is used to form a
higher-order TVD scheme to evaluate the fluxes on
the right hand side. Newton sub-iterations are used at
each time step to maintain higher accuracy. A
Baldwin-Lomax algebraic turbulence model is used
in the code. Only the Euler option of the TURBO
code is used in the present study.

Linear Unsteady Euler Solver, LINFLUX

To obtain the linearized unsteady Euler equations,
Ref. 18, the dependent variables in the unsteady non-
linear Euler equations are expanded in an asymptotic
series of the form

U=U(X)+u(x(x,t),t)+ higher order terms 1)

Assuming the unsteady excitations are harmonic in
time, and with the first order variable to be
represented as complex valued, the above equation
can be written as

U=U(X)+Re{u(X)exp(iax) }+H.O.T. 2)

Here, the term U(X) is of order one and the second
term is of the order £.

Substituting the expansion of Eq. 2 in the non-linear
unsteady Euler equations, and equating terms of like
power in £, and neglecting terms of second and
higher order in £, nonlinear steady equations and
linear variable coefficient unsteady equations are
obtained.

For harmonic blade motions with constant phase
angle between adjacent blades (interblade phase
angle), the values of interblade phase angle (') that
can occur are given as (Ref. 24).

o,=2ar/N ; r=0,12,..... » N-1 3)

where ¥ is the number of blades in the blade row. In
a time domain approach with periodic boundary



conditions, the number of blade passages required to
be modeled depends on the interblade phase angle,
and small phase angles may require large number of
blade passages to calculate the unsteady aerodynamic
forces. However, with the linearized approach and
the assumed harmonic variation in time, the periodic
conditions are applied on a single extended blade
passage region i.e., a region of angular pitch,

6=2n/N 4

In solving the linearized unsteady equations, the
dependent variables are regarded as pseudo-time
dependent. This allows solutions to be determined
using conventional time -marching algorithms to
converge the steady and the complex amplitudes of
the unsteady conservation variables to their steady
state values. For more details, see reference 18.

Aeroelastic model

The aeroelastic equations of motion for each blade of
the blade row of a turbomachine can be written as

[MEX}+[KEX}={PCO.0}+{FO}

where [M] is the mass matrix, [K] is the stiffness
matrix that includes the effects of rotation
(centrifugal stiffening and softening), {X} is the
vector of blade deflections at the finite element grid
points, {P(X),t} is aerodynamic force vector due to
blade vibration that may cause instability, and {F(t)}
1s the aerodynamic force vector due to gust leading to
fatigue failures due to forced response.

A modal formulation is used to proceed further. The
starting point is to obtain a free vibration solution of
the blades giving generalized masses, natural
frequencies, and mode shapes. This solution can be
obtained either by using commercial finite element
codes or by writing one’s own analysis solver. The
general vibratory motion then can be expressed as a
superposition of the contributions of the normal

modes, [d)] = [¢,,¢?, ...... ,(bNM], as
{x}=[¢]'{q} = 294, 6)

where {q} is the generalized displacement, and NM

is the number of normal modes to be used in the
analysis. Substituting Eq. 6 in Eq. 5, and post
multiplying the result by [(D]T, the equations of
motion for the s™ blade can be written as

(O3]

[m.]4.}+[K g} =[aKa}+{aD} a»

where

[.]=[o] (M]9]:

[&.]=[o] [K]9):
(4] =[] (PCO).1);

{AD} =[] {F (1)}

where [M ] and [K ] are generalized mass and

s 3

(7.2)

stiffness matrices, which are diagonal, {qs} is the

generalized displacement vector, and [AS] is the

motion dependent generalized aerodynamic load
matrix, and {ADS} is the motion independent

generalized aerodynamic load vector. The motion
dependent forces cause flutter, and motion
independent forces cause forced response (forced

vibration). The matrices [MJ] [Ks], and [AS] are
of NM x NM size, {qs} and {ADS} are of NM x 1

size.

For a tuned cascade (or rotor), in which all the blades
are identical, the aeroelastic modes consist of
individual blades vibrating with equal amplitudes
with a fixed interblade phase angle between adjacent
blades. Hence, the motion of the sth blade in rth
interblade phase angle mode can be written as

{a}={a.}e" ={a.} "™ ®
where G, is given by Eq. 3.

Thus the equations of motion for the blade, Eq. 7.1
becomes

-w* [Ms]{qar}ei(ar+a,s)+ [Ks] {qar} £ @+3,5)
= [Ar] {qar} ei(ar+a,x) + {AD,} ei(ﬂt+o',x) ©)

Since the blades are identical, the same equation is
obtained for each blade. Thus, no additional
information can be obtained by assembling the
equations for all the blades on the disk. Instead,
equation (9) can be solved for N different values of
the interblade phase angle given by equation (3).



Dropping the subscript s, since each blade is
identical, and canceling out the exponential terms,
Eq. 9 can be written as

-0*[M] {Y} + [K]{Y}-[4]{r}={AD }00)
where { Y] is same as {qar}.

Calculation of Elements of [M s], [K S] and [‘P]

The elements of [Ms] [KS] and [@] are given by

the free vibration analysis using a commercial code
like ANSYS/ NASTRAN or by writing own analysis

program. The matrices [MJ] and [K S] are diagonal.
The elements of [MS] and [Kx] are related as

K, = Miiwiiz an

where @, is the natural frequency of the i" mode. It

is to be noted that usually the mode shapes are mass
normaized giving M, = 1.0.

Calculation of elements of [A,] and {AD,}

The elements of [A,] and {AD,} are obtained from

LINFLUX code. The code is run for a given
frequency and interblade phase angle for a given
mode. The output is the real and imaginary
components of unsteady pressures. This is repeated
for NM modes of vibration. In the case of forced
response for a gust, the code is run only once for the
unsteady excitation.

The mode shape values are interpolated onto the
aerogrid before running LINLFUX as follows: At
each CFD grid point on the blade surface, the
distance to the nearest three finite-element grid points
is calculated. Then, the modal deflections at these
three nearest neighbors are used in a bi-linear
interpolation scheme to calculate the interpolated
value of the modal deflection at that CFD grid point.
This is done considering the blade undeflected
position as the reference position. The interpolated

modal deflections & are stored and are used by
LINFLUX.

Calculation of elements of {AD, }

The elements of {AD} are due to the external

unsteady disturbances coming on to the blade. These
may be due to entropic, vortical and wake
interactions. These disturbances are independent of
the blade vibratory motion, and therefore contribute
only to the forced response aspect of the aeroelastic
problem. The LINFLUX solver can calculate the
unsteady pressures due to these excitations for a
given interblade phase angle, r. Let p be the unsteady
pressure due to these excitations on the blade surface.

_ Then the elements of {ADr} are given by

{aD} = [p,dAd, (12)
where §, is the i* mode shape.
Calculation of elements of [A, |

The elements of [A,] are due to the vibration of the

blade in a given mode. It requires moving the
aerogrid in the given mode in the aerodynamic
calculations, and a given frequency, and calculating
the unsteady aerodynamic forces. The LINFLUX
solver can accept the modal values at each grid point
and can modify the grid as per the modal values.
Once the unsteady aerodynamic pressures are
calculated, the elements of {A} are given as

Ay=[8.dAp, (13)

where D, is the unsteady pressure due to blade
vibration in j'" mode for the rth interblade phase
angle, 9§, is the i* modal deflection, and dA is the
elemental area.

When running LINFLUX the pressure is usually
output as a non-dimensional quantity, which is
multiplied by ( p"‘a,,,,2 ) to get the actual pressure
values, where p is the reference air density and a_

is the reference speed of sound. In calculating area
and modal values, attention should be given to the
non-dimensionlization to length scaling. If L is the
reference length used for scaling the geometry and
the modal values, the final A; have to be multiplied
by L**3 (L for modal values and L**2 for area). It
should also be noted that the modal values (mode
shape) when input to LINFLUX should be divided by
the reference length.

Stability calculation



rodynamic work appr

A work-per-cycle approach can be used to determine
aeroelastic (flutter) stability. Using this approach, the
motion of the blade is prescribed to be a harmonic
vibration in a normal mode with a specified
frequency. The vibration frequency is typically the
natural frequency for the mode of interest, but some
other frequency can also be used. The aerodynamic
forces acting on the vibrating blade and the work
done by these forces on the vibrating blade during a
cycle of vibration are calculated. If work is being
done gn the blade by the aerodynamic forces, the
blade is dynamically unstable, since it will result in
extraction of energy from the flow, leading to an
increase in amplitude of oscillation of the blade.
Note that coupled mode flutter cannot be modeled
with this approach.

To determine aeroelastic stability using the work-per-
cycle approach, the blade motion is specified to be
harmonic:

q(t) = g, sin{ar) (14)
where g, is the amplitude of motion and @ is the

vibration frequency.

The work-per-cycle, W, done on the blade is
calculated as:

W= M pdA.(FK 1 3r)ds (15.1)
N

Oor,

W= ﬂ. PpdA.8q,t cos(at)dt (15.2)
S

where, p = p(x,y,2,t) is the unsteady pressure on the

blade surface due to blade vibration, A is the blade
surface area vector pointing into the blade surface,

J. is the integral over the blade surface, § is the
5

integral over one cycle of blade vibration. The
equation for work per cycle using the linearized
unsteady aerodynamic equations is given in Ref. 18.

The work-per-cycle is an indicator of aeroelastic
stability. The blade is dynamically unstable if the
work done gn the blade during a cycle of blade
vibration is positive. In other words, when W < 0
energy is dissipated by the blade and the systemn is

stable, but when W > 0, energy is gained by the blade
and it is unstable.

jgenvalue approa

An eigenvalue approach allows one to investigate
coupled mode flutter. The flutter frequencies and
flutter modes are calculated rather than assumed as in
aerodynamic work approach. For a stability
calculation (flutter), the motion-independent forces

{AD,} are set to zero, and Eq. (10) can be written as

-0’ [M] {Y}+ [K]{r}-[A] {r}={0} q6)

Dividing Eq. 16 with an assumed frequency, 61)02

(o/0,f MY} +UKHADY} @
{0} (17)

Rearranging, the equations can be written in the
standard eigenvalue problem as:

(2]~ 7oy} ={0} (&)

where

[R]=[IK]-[4]]/ @, (19
[0.] =[M] (20)
and

7=(0/0,) @1)

The solution of the above eigenvalue problem results
in NM complex eigenvalues of the form

i =iy = +iV (22)
, :

The real part of the eigenvalue ([ ) represents the
damping ratio, and the imaginary part (V)
represents the damped frequency; flutter occurs if

120 for any of the eigenvalues.

For the tuned cascade, the stability of each phase
angle mode is examined separately. The interblade
phase angle is fixed at one of the values given by
equation (3), and the NM x NM eigenvalue problem
is solved. The value of interblade phase angle is then



changed, and the procedure is repeated for each of the
N permissible values. The critical phase angle is
identified as the one, which results in the lowest
flutter speed.

Response Caiculation:

The aeroelastic response of the blades induced by
wakes is calculated from equation (10) as

{r}=[[r]-Ale]] '{4D} 23)

The amplitude of the blade, {X]}, is obtained by
summing contributions of {Y} from all the modes.

Results

Results are presented for selected three-dimensional
geomeltry’s in this section. Results presented here are
meant to demonstrate the state of development of the
code. The procedure to do a complete aeroelastic
analysis is shown in Fig.1. The procedure consists of
running six codes, (I) a free vibration analysis and the
corresponding processing code, RDVIB, (II)
TURBO-AE, (III) INTERFACE, (IV) a PRE-
processor, (V) LINFLUX, and (VI) a POST-

processor. The function of each program is explained

below in six steps and shown in table 1. Instep 1a
vibration analysis is done for the blade. The output is
structural gird coordinates, generalized masses,
natural frequencies, and mode shapes. RDVIB reads
this output and writes in a format required by the pre-
processor. In step 2, a steady aerodynamic solution is
obtained from TURBO-AE for the blade. The steady
aerodynamic solution is written as a database. Step 3
consists of running the INTERFACE program to
rewrite the steady data base to the format required by
LINFLUX. In step 4 the pre-processor is run. This
will interpolate modal values at the structural grid
onto the aerogrid, for all the modes. In step 5,
LINFLUX is executed for the mode of interest and
frequency. At this stage LINFLUX also calculates
work per cycle for the mode of interest. In step 6 the
post processor is run, to calculate the generalized
forces, to calculate flutter using the eigenvalue
approach and to calculate forced response
amplitudes.

Two examples are given below to show that the
whole process is working as intended. In the present
paper, the verification of unsteady pressures, and
eigenvalue calculations is given. The unsteady
pressures calculated using LINFLUX code are

compared with those obtained from TURBO-AE and
LINSUB codes. TURBO-AE is a three-dimensional
Euler aeroelastic code developed in Ref.23, and
LINSUB is a two-dimensional unsteady cascade
aerodynamic code based on linear unsteady
aerodynamic theory of Smith, Ref. 3. The eigenvalue
calculations are compared with those obtained from
ASTROP2 code of Ref. 8. The ASTROP2 code uses
strip theory to integrate two-dimensional
aerodynamic forces on to a three dimensional
structure, The aerodynamic forces are calculated
about leading edge, using linear unsteady
aerodynamic theory of Ref. 4. It uses eigenvalue
approach to calculate flutter stability. The
verification of forced response amplitudes will be
presented in a subsequent paper.

Helical Fan

The helical fan configuration consists of a rotor with
twisted flat plate blades enclosed in a cylindrical duct
with no tip gap. This configuration was developed
by researchers to provide a relatively simple test case
for comparison with two-dimensional analyses. Note
that there is no experimental data available for this
configuration.

The parameters for this configuration are such that
the mid-span location corresponds to a flat plate
cascade with a stagger angle of 45 degrees, unit gap-
to-chord ratio, operating in a uniform mean flow at a
Mach number of 0.7 parallel to the blades. The rotor
has 24 blades with a hub/tip ratio of 0.8. The radius

_ at the hub is 8.619 cm (3.395 inches ) and the radius

at the tip is 10.775 cm (4.244 inches). The inlet flow
(axial) Mach number used in this calculation is 0.495,
and the rotation speed of the fan is 16,962.4 rpm,
which results in a relative Mach number of
approximately 0.7 at the mid span section.

The grid used for the calculations is 141x11x41 in
each blade passage. On each blade surface, 81 points
are located in the chordwise direction, 11 points in
the spanwise direction, and 41 points in blade to
blade direction. The inlet and exit boundaries are
located at an axial distance of approximately 0.7
chord lengths from the blade leading and trailing
edges. A steady solution is obtained first with
TURBO-AE solver (step 2). Program INTERFACE
is run to convert the steady aerodynamic solution
data to the form required by LINFLUX (step 3).
Next unsteady pressures are calculated for harmonic
blade vibration in plunging and pitching modes.
Mode shapes (step 1) are prescribed ( i.e. no



structural analysis is done ) such that the amplitude of
vibration does not vary along the span. This choice
of mode shapes is meant to reduce the three
dimensionality of the unsteady flow field for ease of
comparison with two-dimensional analyses.

LINFLUX can be run by an input choice, iflut=1, by
having these prescribed mode shapes internally
calculated. However, the purpose of this effort is to
run for arbitrary mode shapes that are calculated
outside LINFLUX and to see that they are correctly
read by LINFLUX. To check this, the mode shapes
are obtained by running LINFLUX with iflut=1 and
are written on unit 3. PRE is then run to interpolate
the mode shapes onto the aerogrid. But for this case
this will not change the modal values at the aerogrid

points since the modal values are obtained form

LINFLUX to start with. So actually step 4 is not
required for this example. After running PRE the
interpolated mode shapes are written on unit 27.
Now LINFLUX is run with iflut =2, which reads the
externally supplied mode shape values at aero-grid
points. LINFLUX is run for unsteady pressures and
compared with those obtained with iflut=1 and
published results.

Figures 2 and 3 show the unsteady pressures at mid
span obtained for a reduced frequency, @, of
1(w=w,L/U = o, L/a M, = ©®/M, |,
where @ =w,L/a_, and L is the reference length.

It should be noted that @ is the input to LINFLUX.).
For the present calculations the value of speed of
sound, 4, is assumed as 13707 in/sec, reference
length is the chord which is 1.0 inch giving, a value
of 1527 cycles/sec for the assumed frequency @,.

Figure 2 is for plunging motion and Fig 3 is for
pitching motion about leading edge. Fig 2.1 is for
zero phase angle, fig. 2.2 is for 180 degrees phase
angle. Figures for 3.1 and 3.2 show the unsteady
pressure distributions for pitching motion for zero
and 90 degrees phase angle respectively.  The
pressures are compared with those obtained from
LINSUB code based on Smith theory, Ref. 3. To
compare with LINSUB results, the unsteady pressure
output from LINFLUX is divided by square of the

Mach number times the amplitude of oscillation. The

pressure distribution predictions from LINFLUX
show excellent agreement with those from LINSUB.

Next the unsteady pressure distributions from
LINFLUX are compared with those obtained from
TURBO-AE in figures 4 and 5. Figure 4 is for
plunging motion for zero and 180 degree phase

angles and figure 5 is for pitching motion for zero
and 90 degrees phase angles. Again, excellent
agreement is seen between the predictions.

Table 2 shows the work-per-cycle calculations for
this case, and comparison with TURBO-AE, Ref. 23.
The work per cycle for plunging motion shows
excellent agreement, however, the calculations for
pitching motion show a lot of difference. This may
be due to an error in normalization, since unsteady
pressures shown earlier agreed well for this case.
Some of these results were also reported in Ref. 18.
They are included here for completeness, and to show
that the present authors successfully ran LINFLUX
code as intended, and for externally calculated mode
shapes.

Next, the calculated unsteady pressures are used by
POST to calculate generalized forces and
eigenvalues. The generalized forces are calculated
using the prescribed mode shape used for the
unsteady aerodynamic pressure calculation. To
validate the eigenvalue calculations, the present
results are compared with those obtained from the
ASTROP2 code. As mentioned before, the
ASTROP?2 code uses strip theory to integrate two-
dimensional aerodynamic forces on to a three
dimensional structure. The aerodynamic forces are
calculated about leading edge, using theory of Ref. 4.
It uses eigenvalue approach to calculate stability. As
unsteady pressures are already compared above with
Smith theory, this aspect will give validation to the
calculation of generalized forces and eigenvalues.
Table 3 shows the eigenvalues obtained by the
present post processor and the ASTROP2 code for an
assumed frequency of @ = 0.7 and for 6 = 0
degrees. They show excellent correlation. As
expected, the eigenvalues indicate that the blades are
stable, which was also indicted by the work per cycle
approach in TURBO-AE and LINFLUX programs.
This validates the routines in the post-processor.

Energy Efficient Engine, E3

In this section, an example is considered where the
mode shapes are not prescribed as for helical fan but
obtained from a modal analysis. The configuration
selected is derived from the Energy Efficient Engine
{E-cubed) fan rotor. The E-cubed program was
established by GE Aircraft Engines under NASA
sponsorship in the 1980’s to demonstrate component
technologies necessary to achieve higher efficiencies

_ and reduce environmental effects in future subsonic



turbofan engines. Details regarding design and
performance tests have been presented in Ref. 25,

The fan rotor has 32 blades with a tip diameter, D, of
210.8 cm (83 inches). The inlet Mach number is 0.5,
The fan is rotating at a speed of 2727 rpm. The CFD
grid is a simple sheared grid of size 43x15x11 with
15 points on the blade surface in both the chordwise
and spanwise directions. It is assumed that the tip
gap is zero. The finite-element structural dynamics
data is for a structural grid with 224 points.

First a structural dynamic solution is obtained giving
the modal frequencies and mode shapes. (step 1). The
first mode is predominately bending with a frequency
of 72.4 Hz, and the second mode is predominately
torsion with a frequency of 163.8 Hz.

A steady solution is obtained for this configuration
using TURBO-AE. (step 2). The steady data base is
processed through INTERFACE to get formatted
data for LINFLUX (step 3). Then PRE is run to
interpolate the modal values onto the aerogrid (step
4). The interpolated modal values are verified by
plotting the deflected blade shape (not included here)
and by manually checking the tip displacement
values. Overall, the interpolated deflections matched
the original deflections except for slight differences
in the blade tip region.

The unsteady aerodynamic solutions are then
performed using LINFLUX. LINFLUX is run for a
frequency of oscillation equal to the first mode (step
5). The non-dimensional frequency @ =wD/a_

input to LINFLUX is 2.732. Figures 6.1 through 6.4
show the unsteady pressures plotted for mid span for
zero, 90, 180 and 270 degree phase angles. They are
compared with TURBO-AE results. The TURBO-
AE results are obtained using 100 steps per cycle. It
can be seen that there is considerable difference
between the two results, even though the trends are
same. The difference is attributed to the fact that
LINFLUX requires a very good steady solution,
especially near leading edge, to get a comparable
solution with TURBO-AE predictions.

Figure 7.1 and 7.2 shows the unsteady pressures
compared for the second mode. The non-
dimensional frequency @ =a@D/a_ input to
LINFLUX is 4.183. It is to be noled that the value of
the frequency parameter calculated with the second
frequency is 6.18263. However, with this value the
unsteady solution could not be obtained with

LINFLUX. Therefore, the value is reduced to 4.183,
where an unsteady solution could be obtained for o
=0 and 270 degrees. Again, even for this value of
@, solution could not be obtained for 6 = 90° and
180°. There may be two reasons for this behavior: (1)
the steady solution is not sufficiently converged for
LINFLUX run, (2) there is an inherent problem with
LINFLUX that requires experience with CFL
numbers, grid etc.

Table 4 shows the work per cycle calculations from
LINFLUX compared to TURBO-AE results. Both
show a considerable difference. This is believed to
be due to the coarse grid used in the calculations, and
further calculations should be done with finer grid for
this fan. Table 5 shows the eigenvalues calculated
for this fan from POST and ASTROP2 for @ =
4.183 or @, = 111 Hz and for ¢ = 0 degrees. There

is some difference which is expected as the linear
unsteady aerodynamic analysis in ASTROP2 neglects
the effect of steady loading on flutter.

Concluding Remarks

The status of a turboamchinery aeroelastic code
LINFLUX-AE is presented. The code is based on
running four codes, one for steady aerodynamic
solution, a linearized unsteady aerodynamic solution
and for flutter and response calculations. Other
modules required for connecting these solutions are
developed and verified. These include a
preprocessor to read structural vibration data, an
interface for reading steady aerodynamic solution
data and routine to interpolate mode shapes on to
aero-grid, and routines for calculating eigenvalues
and response amplitudes.

The code is verified by running for two three-
dimensional geometry fans. A helical fan with flat
plate airfoils provided comparison with published
results and a E-cubed fan providing calculation for a
realistic fan.

It was noted that for the helical fan with flat plate
geometry, the unsteady pressures calculated from
LINFLUX agreed well with LINSUB and TURBO-
AE. However, the work per cycle calculations for
pitching motion are not identical between LINFLUX
and TURBO-AE. The flutter eigenvalues for an
idealized flutter analysis showed the eigenvalues
from LINFLUX-AE are close of those obtained from
ASTROP2.

For the E-cubed fan geometry, the unsteady pressures
from LINFLUX and TURBO-AE showed
considerable difference. This may be due to the fact
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that the steady solution obtained from TURBO-AE is
not a sufficiently accurate solution for LINFLUX
code. This affected the work per cycle calculations
also. In addition, unsteady solutions could not be
obtained for some phase angles and some frequencies
with LINFLUX. It is suggested that all the
calculations for E-cubed fan be redone with a steady
solution obtained with a fine grid. Further runs with
some more 3D geometry’s and validation of forced
response calculations are planned for future.
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Table 1: LINFLUX-AE modules and their function

steps

program name

function

RDVIB

(1) do free vibration analysis. At present done outside this program
through ANSYS, NASTRAN etc.

(2) read vibration analysis output file and rotate the grid and mode
shapes to aero-grid coordinate system, write on UNIT 3

TURBO-AE

do steady aerodynamic analysis

INTERFACE

convert TURBO-AE output to data format required by LINFLUX,
write on UNIT 51

PRE

interpolate (calculate) mode shape values at each aero-grid point on
both the airfoil surfaces for all modes (UNIT 27);
out.mode.l; out.mode.2 ...... out.mode. NM

LINFLUX

calculate unsteady pressures for the given mode, frequency and
interblade phase angle; repeat for all modes, frequencies and
interblade phase angles (UNIT 94);
out.prss.1 and out.prsp.l; out.prss.2, out.prsp.2
............ out.prss.NM, out.prsp.NM

POST

calculate generalized forces; flutter eigenvalues and response

I p




Table 2: Comparison of work/cycle, = 0.7, Helical fan, M=0.5, {2=16962 rpm

Plunging Pitching about mid-chord
sigma | ND [ LINFLUX | TURBO-AE sigma | ND | LINFLUX TURBO-AE
0 0 -1.6854-02 | -1.6907-02 0 0 -0.13928-03 -0.26938-03
90 6 -2.5382-02 | -2.5351-02 90 6 -0.13334-03 -0.24221-03
180 12 -4.616-02 -4.5597-02 180 12 -0.33714-03 -0.06438-02
270 -6 -2.863-02 -3.5906-02 270 -6 -0.35759-03 -0.07989-02
Table 3: Eigenvalue comparison, Helical fan
mode LINFLUX-AE ASTROP2
Eigenvalue Eigenvalue
real imaginary real imaginary
1 -0.6533-06 | 0.1527+04 | -0.4637-06 | 0.152704+04
2 -0.1024-08 | 0.4500+04 | -0.8846-08 | 0.45000+04
Table 4: Comparison of work/cycle, E-cubed fan, M=0.5, Q= 2727 rpm
mode 1; @ =2.732 mode 2; @ =4.183
sigma | ND LINFLUX TURBO-AE sigma | ND LINFLUX TURBO-AE
0 0 -0.18668-03 -0.7225-03 0 0 -0.7853-03 -0.4225-02
90 8 -0.87189-03 -0.3526-02 90 8 * 0.2108-03
180 16 -0.2394-02 -0.6938-02 180 16 * -0.5518-02
270 -8 -0.18337-02 -0.3836-02 270 -8 -0.53142-03 -1.1175-02
* the solution did not converge;
got into numerically unstable region
Table 5: Eigenvalue comparison, E-cubed fan
mode LINFLUX-AE ASTROP2
Eigenvalue Eigenvalue
real imaginary real imaginary
| -0.1001-00 | 0.7217+02 -0.5242+00 | 0.7191+02
2 -0.7807-01 | 0.1632+03 -0.3021+01 | 0.1635+03

12




INPUT: Free Vibration Analysis

: generalized masses, frequencies and
mode shapes

run RDVIB
: processed free vibration data (UNIT 3)

run INTERFACE
: processed data for

LINFLUX (UNIT 51)

run PRE
:interpolated mode shapes onto aerogrid
(UNIT 27)

run TURBO-AE

: steady aerodynamic
solution (UNIT 52)

run LINFLUX for mode, frequency,
and interblade phase angle of interest
: unsteady pressures (UNIT 94)

A 4

run POST
: generalized forces, flutter and

response
|

Figure 1 : LINFLUX-AE flow chart
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Figure 7.1 Unsteady pressure distribution for mode 2
E-cubed fan, @ =4.183, 6 =0°.
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Figure 7.2 Unsteady pressure distribution for mode 2,
E-cubed fan, @ =4.183, 6 =270°



